The death receptor antagonist FLIP-L interacts with Trk and is necessary for neurite outgrowth induced by neurotrophins.

نویسندگان

  • Rana S Moubarak
  • Carme Solé
  • Marta Pascual
  • Humberto Gutierrez
  • Marta Llovera
  • M José Pérez-García
  • Raffaella Gozzelino
  • Miguel F Segura
  • Victoria Iglesias-Guimarais
  • Stéphanie Reix
  • Rosa M Soler
  • Alun M Davies
  • Eduardo Soriano
  • Victor J Yuste
  • Joan X Comella
چکیده

FLICE-inhibitory protein (FLIP) is an endogenous inhibitor of the signaling pathway triggered by the activation of death receptors. Here, we reveal a novel biological function for the long form of FLIP (FLIP-L) in neuronal differentiation, which can be dissociated from its antiapoptotic role. We show that FLIP-L is expressed in different regions of the mouse embryonic nervous system. Immunohistochemistry of mouse brain sections at different stages reveals that, in neurons, FLIP is expressed early during the embryonic neuronal development (embryonic day 16) and decreases at later stages (postnatal days 5-15), when its expression is essentially detected in glial cells. FLIP-L overexpression significantly enhances neurotrophin-induced neurite outgrowth in motoneurons, superior cervical ganglion neurons, and PC12 cells. Conversely, the downregulation of FLIP-L protein levels by specific RNA interference significantly reduces neurite outgrowth, even in the presence of the appropriate neurotrophin stimulus. Moreover, NGF-dependent activation of two main intracellular pathways involved in the regulation of neurite outgrowth, extracellular signal-regulated kinases (ERKs) and nuclear factor kappaB (NF-kappaB), is impaired when endogenous FLIP-L is downregulated, although TrkA remains activated. Finally, we demonstrate that FLIP-L interacts with TrkA, and not with p75(NTR), in an NGF-dependent manner, and endogenous FLIP-L interacts with TrkB in whole-brain lysates from embryonic day 15 mice embryos. Altogether, we uncover a new role for FLIP-L as an unexpected critical player in neurotrophin-induced mitogen-activated protein kinase/ERK- and NF-kappaB-mediated control of neurite growth in developing neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Different Concentrations of Morphine on Staurosporine-Induced Neurite Outgrowth in Pc12 Cells

Purpose: The present study was conducted to evaluate the effect of different concentrations of morphine on staurosporine-induced neurite outgrowth in PC12 cells. Materials and Methods: PC12 cells were cultured in RPMI1640 culture medium supplemented with 0.2% BSA. Cells were divided into three groups; Ι, ΙΙ and ΙΙΙ, culture in the presence of 50, 100 and 214 nM staurosporine respectively. In ea...

متن کامل

The death receptor antagonist FAIM promotes neurite outgrowth by a mechanism that depends on ERK and NF-κB signaling

Fas apoptosis inhibitory molecule (FAIM) is a protein identified as an antagonist of Fas-induced cell death. We show that FAIM overexpression fails to rescue neurons from trophic factor deprivation, but exerts a marked neurite growth-promoting action in different neuronal systems. Whereas FAIM overexpression greatly enhanced neurite outgrowth from PC12 cells and sympathetic neurons grown with n...

متن کامل

Amitriptyline protects against TNF-α-induced atrophy and reduction in synaptic markers via a Trk-dependent mechanism.

Neuritic degeneration and synaptic loss are features of both neuroinflammation and neurodegenerative disease. The tricyclic antidepressant amitriptyline has neurotrophic and anti-inflammatory properties and acts as a novel agonist of the neurotrophin Trk receptors. Primary cortical neurons were treated with amitriptyline, nortriptyline and NGF and tested for neuronal complexity by Sholl analysi...

متن کامل

Human tumorous imaginal disc 1 (TID1) associates with Trk receptor tyrosine kinases and regulates neurite outgrowth in nnr5-TrkA cells.

The human tumorous imaginal disc 1 (TID1) proteins including TID1(L) and TID1(S), members of the DnaJ domain protein family, are involved in multiple intracellular signaling pathways such as apoptosis induction, cell proliferation, and survival. Here we report that TID1 associates with the Trk receptor tyrosine kinases and regulates nerve growth factor (NGF)-induced neurite outgrowth in PC12-de...

متن کامل

Retrograde Neurotrophic Signaling Requires a Protein Interacting with Receptor Tyrosine Kinases via C2H2 Zinc Fingers

Neurotrophins at axonal terminals signal to cell bodies to regulate neuronal development via signaling endosomes containing activated Trk receptor tyrosine kinases and mitogen-activated protein kinases (MAPKs). Requirements for the formation of signaling endosomes remain, however, poorly characterized. Here we show that a novel Trk-interacting protein, NTRAP (neurotrophic factor receptor-associ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 17  شماره 

صفحات  -

تاریخ انتشار 2010